Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38712048

RESUMO

Background & Aims: Despite increasing therapeutic options in the treatment of ulcerative colitis (UC), achieving disease remission remains a major clinical challenge. Nonresponse to therapy is common and clinicians have little guidance in selecting the optimal therapy for an individual patient. This study examined whether patient-derived materials could predict individual clinical responsiveness to the Janus kinase (JAK) inhibitor, tofacitinib, prior to treatment initiation. Method: In 48 patients with UC initiating tofacitinib, we longitudinally collected clinical covariates, stool, and colonic biopsies to analyze the microbiota, transcriptome, and exome variations associated with clinical responsiveness at week 24. We established patient-derived organoids (n = 23) to determine how their viability upon stimulation with proinflammatory cytokines in the presence of tofacitinib related to drug responsiveness in patients. We performed additional biochemical analyses of organoids and primary tissues to identify the mechanism underlying differential tofacitinib sensitivity. Results: The composition of the gut microbiota, rectal transcriptome, inflammatory biomarkers, and exome variations were indistinguishable among UC patients prior to tofacitinib treatment. However, a subset of patient-derived organoids displayed reduced sensitivity to tofacitinib as determined by the ability of the drug to inhibit STAT1 phosphorylation and loss of viability upon cytokine stimulation. Remarkably, sensitivity of organoids to tofacitinib predicted individual clinical patient responsiveness. Reduced responsiveness to tofacitinib was associated with decreased levels of the cationic transporter MATE1, which mediates tofacitinib uptake. Conclusions: Patient-derived intestinal organoids predict and identify mechanisms of individual tofacitinib responsiveness in UC. Specifically, MATE1 expression predicted clinical response to tofacitinib.

2.
Sci Immunol ; 9(94): eadi1023, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608038

RESUMO

The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.


Assuntos
Coreia , Diferenciação Celular , Citocinas , Células Dendríticas
3.
Sci Adv ; 10(12): eadj4387, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517971

RESUMO

Much is known about molecular mechanisms by which animals detect pathogenic microbes, but how animals sense beneficial microbes remains poorly understood. The roundworm Caenorhabditis elegans is a microbivore that must distinguish nutritive microbes from pathogens. We characterized a neural circuit used by C. elegans to rapidly discriminate between nutritive bacteria and pathogens. Distinct sensory neuron populations responded to chemical cues from nutritive Escherichia coli and pathogenic Enterococcus faecalis, and these neural signals are decoded by downstream AIB interneurons. The polyamine metabolites cadaverine, putrescine, and spermidine produced by E. coli activate this neural circuit and elicit positive chemotaxis. Our study shows how polyamine odorants can be sensed by animals as proxies for microbe identity and suggests that, hence, polyamines might have widespread roles brokering host-microbe interactions.


Assuntos
Caenorhabditis elegans , Poliaminas , Animais , Poliaminas/metabolismo , Caenorhabditis elegans/metabolismo , Escherichia coli/metabolismo , Espermidina , Putrescina
4.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38529505

RESUMO

Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy. Here, we identified that diverse mitochondrial myopathy models elicit a protective mitochondrial integrated stress response (mt-ISR), mediated by OMA1-DELE1 signaling. The response was similar following disruptions in mtDNA maintenance, from knockout of Tfam, and mitochondrial protein unfolding, from disease-causing mutations in CHCHD10 (G58R and S59L). The preponderance of the response was directed at upregulating pathways for aminoacyl-tRNA biosynthesis, the intermediates for protein synthesis, and was similar in heart and skeletal muscle but more limited in brown adipose challenged with cold stress. Strikingly, models with early DELE1 mt-ISR activation failed to grow and survive to adulthood in the absence of Dele1, accounting for some but not all of OMA1's protection. Notably, the DELE1 mt-ISR did not slow net protein synthesis in stressed striated muscle, but instead prevented loss of translation-associated proteostasis in muscle fibers. Together our findings identify that the DELE1 mt-ISR mediates a stereotyped response to diverse forms of mitochondrial stress and is particularly critical for maintaining growth and survival in early-onset mitochondrial myopathy.

5.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328256

RESUMO

Understanding the molecular mechanisms that underpin diverse vaccination responses is a critical step toward developing efficient vaccines. Molecular subtyping approaches can offer valuable insights into the heterogeneous nature of responses and aid in the design of more effective vaccines. In order to explore the molecular signatures associated with the vaccine response, we analyzed baseline transcriptomics data from paired samples of whole blood, proteomics and glycomics data from serum, and metabolomics data from urine, obtained from influenza vaccine recipients (2019-2020 season) prior to vaccination. After integrating the data using a network-based model, we performed a subtyping analysis. The integration of multiple data modalities from 62 samples resulted in five baseline molecular subtypes with distinct molecular signatures. These baseline subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation across subtypes in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these significant differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining vaccine response and efficacy. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.

6.
Nat Commun ; 15(1): 447, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200091

RESUMO

Accumulation of advanced glycation end products (AGEs) on biopolymers accompanies cellular aging and drives poorly understood disease processes. Here, we studied how AGEs contribute to development of early onset Parkinson's Disease (PD) caused by loss-of-function of DJ1, a protein deglycase. In induced pluripotent stem cell (iPSC)-derived midbrain organoid models deficient for DJ1 activity, we find that lysosomal proteolysis is impaired, causing AGEs to accumulate, α-synuclein (α-syn) phosphorylation to increase, and proteins to aggregate. We demonstrated these processes are at least partly driven by astrocytes, as DJ1 loss reduces their capacity to provide metabolic support and triggers acquisition of a pro-inflammatory phenotype. Consistently, in co-cultures, we find that DJ1-expressing astrocytes are able to reverse the proteolysis deficits of DJ1 knockout midbrain neurons. In conclusion, astrocytes' capacity to clear toxic damaged proteins is critical to preserve neuronal function and their dysfunction contributes to the neurodegeneration observed in a DJ1 loss-of-function PD model.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Proteostase , Astrócitos , Proteólise , Mesencéfalo , Organoides , Lisossomos
7.
Nat Cancer ; 5(1): 85-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814010

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Glutamina/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Inibidores Enzimáticos/farmacologia
8.
Cell Rep ; 42(11): 113374, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37938973

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of ß-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
9.
J Allergy Clin Immunol ; 152(6): 1619-1633.e11, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659505

RESUMO

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Doença Granulomatosa Crônica , Doenças Inflamatórias Intestinais , Humanos , Doença Granulomatosa Crônica/genética , NADPH Oxidases , Estudos Transversais
10.
J Allergy Clin Immunol ; 152(6): 1569-1580, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37619819

RESUMO

BACKGROUND: Rising rates of peanut allergy (PA) motivate investigations of its development to inform prevention and therapy. Microbiota and the metabolites they produce shape food allergy risk. OBJECTIVE: We sought to gain insight into gut microbiome and metabolome dynamics in the development of PA. METHODS: We performed a longitudinal, integrative study of the gut microbiome and metabolome of infants with allergy risk factors but no PA from a multicenter cohort followed through mid-childhood. We performed 16S rRNA sequencing, short chain fatty acid measurements, and global metabolome profiling of fecal samples at infancy and at mid-childhood. RESULTS: In this longitudinal, multicenter sample (n = 122), 28.7% of infants developed PA by mid-childhood (mean age 9 years). Lower infant gut microbiome diversity was associated with PA development (P = .014). Temporal changes in the relative abundance of specific microbiota and gut metabolite levels significantly differed in children who developed PA. PA-bound children had different abundance trajectories of Clostridium sensu stricto 1 sp (false discovery rate (FDR) = 0.015) and Bifidobacterium sp (FDR = 0.033), with butyrate (FDR = 0.045) and isovalerate (FDR = 0.036) decreasing over time. Metabolites associated with PA development clustered within the histidine metabolism pathway. Positive correlations between microbiota, butyrate, and isovalerate and negative correlations with histamine marked the PA-free network. CONCLUSION: The temporal dynamics of the gut microbiome and metabolome in early childhood are distinct for children who develop PA. These findings inform our thinking on the mechanisms underlying and strategies for potentially preventing PA.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade a Amendoim , Criança , Pré-Escolar , Humanos , Lactente , Butiratos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metaboloma , RNA Ribossômico 16S/genética , Estudos Longitudinais
11.
Nat Struct Mol Biol ; 30(10): 1481-1494, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653241

RESUMO

Synaptic complexes of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) with auxiliary subunits mediate most excitatory neurotransmission and can be targeted to treat neuropsychiatric and neurological disorders, including epilepsy. Here we present cryogenic-electron microscopy structures of rat GluA2 AMPAR complexes with inhibitory mouse γ5 and potentiating human cornichon-2 (CNIH2) auxiliary subunits. CNIH2 appears to destabilize the desensitized state of the complex by reducing the separation of the upper lobes in ligand-binding domain dimers. At the same time, CNIH2 stabilizes binding of polyamine spermidine to the selectivity filter of the closed ion channel. Nevertheless, CNIH2, and to a lesser extent γ5, attenuate polyamine block of the open channel and reduce the potency of the antiepileptic drug perampanel that inhibits the synaptic complex allosterically by binding to sites in the ion channel extracellular collar. These findings illustrate the fine-tuning of synaptic complex structure and function in an auxiliary subunit-dependent manner, which is critical for the study of brain region-specific neurotransmission and design of therapeutics for disease treatment.


Assuntos
Anticonvulsivantes , Poliaminas , Ratos , Camundongos , Animais , Humanos , Poliaminas/farmacologia , Anticonvulsivantes/farmacologia , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Nitrilas
12.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131623

RESUMO

LKB1/STK11 is a serine/threonine kinase that plays a major role in controlling cell metabolism, resulting in potential therapeutic vulnerabilities in LKB1-mutant cancers. Here, we identify the NAD + degrading ectoenzyme, CD38, as a new target in LKB1-mutant NSCLC. Metabolic profiling of genetically engineered mouse models (GEMMs) revealed that LKB1 mutant lung cancers have a striking increase in ADP-ribose, a breakdown product of the critical redox co-factor, NAD + . Surprisingly, compared with other genetic subsets, murine and human LKB1-mutant NSCLC show marked overexpression of the NAD+-catabolizing ectoenzyme, CD38 on the surface of tumor cells. Loss of LKB1 or inactivation of Salt-Inducible Kinases (SIKs)-key downstream effectors of LKB1- induces CD38 transcription induction via a CREB binding site in the CD38 promoter. Treatment with the FDA-approved anti-CD38 antibody, daratumumab, inhibited growth of LKB1-mutant NSCLC xenografts. Together, these results reveal CD38 as a promising therapeutic target in patients with LKB1 mutant lung cancer. SIGNIFICANCE: Loss-of-function mutations in the LKB1 tumor suppressor of lung adenocarcinoma patients and are associated with resistance to current treatments. Our study identified CD38 as a potential therapeutic target that is highly overexpressed in this specific subtype of cancer, associated with a shift in NAD homeostasis.

14.
Expert Rev Med Devices ; 20(4): 329-336, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36919560

RESUMO

BACKGROUND: Powered intraosseous (IO) systems are valuable devices for emergent situations, with limited data on user preferences. A simulation/survey-based study was conducted among emergency medical service (EMS) providers to evaluate attitudes toward general powered IO system features to measure preferences/satisfaction for the most-commonly used and a novel powered IO system (with a passive safety needle, battery life indicator, and snap-securement/dressing). RESEARCH DESIGN AND METHODS: Forty-two EMS providers completed a simulated activity using both powered IO systems and a 30-item questionnaire, including multiple choice, free-text, ranking, and Likert-like questions. Ranking scores were reported using a scale of 0 (least important/satisfactory) to 100 (most important/satisfactory). Statistical significances were evaluated via Wilcoxon signed-rank sum test. RESULTS: Providers indicated driver performance (mean score ± SD; 77.8 ± 27.5) and IO needle safety mechanism (63.1 ± 27.9) as the most important features. Participants reported significantly higher (p < 0.001) satisfaction with the novel IO system overall, and its needle safety, battery life indicator, securement/dressing, and ease-of-use. Powered driver performance satisfaction was similar and favorable for the novel (88.1 ± 18.2) and traditional (87.1 ± 15.3) systems. CONCLUSIONS: These findings highlight the value of clinician/user input and demonstrate EMS providers are more satisfied with a powered IO system featuring design elements intended to enhance safety and ease-of-use.


Assuntos
Serviços Médicos de Emergência , Humanos , Reprodutibilidade dos Testes , Desenho de Equipamento , Infusões Intraósseas , Satisfação Pessoal
15.
Epilepsia ; 64(4): 1046-1060, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775798

RESUMO

OBJECTIVE: High-fat and low-carbohydrate diets can reduce seizure frequency in some treatment-resistant epilepsy patients, including the more flexible modified Atkins diet (MAD), which is more palatable, mimicking fasting and inducing high ketone body levels. Low-carbohydrate diets may shift brain energy production, particularly impacting neuron- and astrocyte-linked metabolism. METHODS: We evaluated the effect of short-term MAD on molecular mechanisms in adult epilepsy patients from surgical brain tissue and plasma compared to control participants consuming a nonmodified higher carbohydrate diet (n = 6 MAD, mean age = 43.7 years, range = 21-53, diet for average 10 days; n = 10 control, mean age = 41.9 years, range = 28-64). RESULTS: By metabolomics, there were 13 increased metabolites in plasma (n = 15 participants with available specimens), which included 4.10-fold increased ketone body 3-hydroxybutyric acid, decreased palmitic acid in cortex (n = 16), and 11 decreased metabolites in hippocampus (n = 6), which had top associations with mitochondrial functions. Cortex and plasma 3-hydroxybutyric acid levels had a positive correlation (p = .0088, R2  = .48). Brain proteomics and RNAseq identified few differences, including 2.75-fold increased hippocampal MT-ND3 and trends (p < .01, false discovery rate > 5%) in hippocampal nicotinamide adenine dinucleotide (NADH)-related signaling pathways (activated oxidative phosphorylation and inhibited sirtuin signaling). SIGNIFICANCE: Short-term MAD was associated with metabolic differences in plasma and resected epilepsy brain tissue when compared to control participants, in combination with trending expression changes observed in hippocampal NADH-related signaling pathways. Future studies should evaluate how brain molecular mechanisms are altered with long-term MAD in a larger cohort of epilepsy patients, with correlations to seizure frequency, epilepsy syndrome, and other clinical variables. [Clinicaltrials.gov NCT02565966.].


Assuntos
Dieta Rica em Proteínas e Pobre em Carboidratos , Dieta Cetogênica , Epilepsia , Humanos , Adulto , Recém-Nascido , Pessoa de Meia-Idade , Transcriptoma , Ácido 3-Hidroxibutírico , NAD , Proteômica , Epilepsia/genética , Epilepsia/cirurgia , Dieta com Restrição de Carboidratos , Convulsões , Corpos Cetônicos , Resultado do Tratamento
16.
Neuron ; 111(8): 1282-1300.e8, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36787750

RESUMO

Cannabidiol (CBD), a non-euphoric component of cannabis, reduces seizures in multiple forms of pediatric epilepsies, but the mechanism(s) of anti-seizure action remain unclear. In one leading model, CBD acts at glutamatergic axon terminals, blocking the pro-excitatory actions of an endogenous membrane phospholipid, lysophosphatidylinositol (LPI), at the G-protein-coupled receptor GPR55. However, the impact of LPI-GPR55 signaling at inhibitory synapses and in epileptogenesis remains underexplored. We found that LPI transiently increased hippocampal CA3-CA1 excitatory presynaptic release probability and evoked synaptic strength in WT mice, while attenuating inhibitory postsynaptic strength by decreasing GABAARγ2 and gephyrin puncta. LPI effects at excitatory and inhibitory synapses were eliminated by CBD pre-treatment and absent after GPR55 deletion. Acute pentylenetrazole-induced seizures elevated GPR55 and LPI levels, and chronic lithium-pilocarpine-induced epileptogenesis potentiated LPI's pro-excitatory effects. We propose that CBD exerts potential anti-seizure effects by blocking LPI's synaptic effects and dampening hyperexcitability.


Assuntos
Canabidiol , Camundongos , Animais , Canabidiol/farmacologia , Hipocampo/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Sinapses/fisiologia , Transdução de Sinais , Receptores de Canabinoides/metabolismo
17.
Viruses ; 15(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36680282

RESUMO

Influenza represents a major and ongoing public health hazard. Current collaborative efforts are aimed toward creating a universal flu vaccine with the goals of both improving responses to vaccination and increasing the breadth of protection against multiple strains and clades from a single vaccine. As an intermediate step toward these goals, the current work is focused on evaluating the systemic host response to vaccination in both normal and high-risk populations, such as the obese and geriatric populations, which have been linked to poor responses to vaccination. We therefore employed a metabolomics approach using a time-course (n = 5 time points) of the response to human vaccination against influenza from the time before vaccination (pre) to 90 days following vaccination. We analyzed the urinary profiles of a cohort of subjects (n = 179) designed to evenly sample across age, sex, BMI, and other demographic factors, stratifying their responses to vaccination as "High", "Low", or "None" based on the seroconversion measured by hemagglutination inhibition assay (HAI) from plasma samples at day 28 post-vaccination. Overall, we putatively identified 15,903 distinct, named, small-molecule structures (4473 at 10% FDR) among the 895 samples analyzed, with the aim of identifying metabolite correlates of the vaccine response, as well as prognostic and diagnostic markers from the periods before and after vaccination, respectively. Notably, we found that the metabolic profiles could unbiasedly separate the high-risk High-responders from the high-risk None-responders (obese/geriatric) within 3 days post-vaccination. The purine metabolites Guanine and Hypoxanthine were negatively associated with high seroconversion (p = 0.0032, p < 0.0001, respectively), while Acetyl-Leucine and 5-Aminovaleric acid were positively associated. Further changes in Cystine, Glutamic acid, Kynurenine and other metabolites implicated early oxidative stress (3 days) after vaccination as a hallmark of the High-responders. Ongoing efforts are aimed toward validating these putative markers using a ferret model of influenza infection, as well as an independent cohort of human seasonal vaccination and human challenge studies with live virus.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Idoso , Anticorpos Antivirais , Furões , Vacinação , Testes de Inibição da Hemaglutinação , Metaboloma
18.
Nat Commun ; 13(1): 6041, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253360

RESUMO

Tumors exhibit enhancer reprogramming compared to normal tissue. The etiology is largely attributed to cell-intrinsic genomic alterations. Here, using freshly resected primary CRC tumors and patient-matched adjacent normal colon, we find divergent epigenetic landscapes between CRC tumors and cell lines. Intriguingly, this phenomenon extends to highly recurrent aberrant super-enhancers gained in CRC over normal. We find one such super-enhancer activated in epithelial cancer cells due to surrounding inflammation in the tumor microenvironment. We restore this super-enhancer and its expressed gene, PDZK1IP1, following treatment with cytokines or xenotransplantation into nude mice, thus demonstrating cell-extrinsic etiology. We demonstrate mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. We show this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Microambiente Tumoral/genética
19.
Elife ; 112022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36165439

RESUMO

Major genomic deletions in independent eukaryotic lineages have led to repeated ancestral loss of biosynthesis pathways for nine of the twenty canonical amino acids. While the evolutionary forces driving these polyphyletic deletion events are not well understood, the consequence is that extant metazoans are unable to produce nine essential amino acids (EAAs). Previous studies have highlighted that EAA biosynthesis tends to be more energetically costly, raising the possibility that these pathways were lost from organisms with access to abundant EAAs. It is unclear whether present-day metazoans can reaccept these pathways to resurrect biosynthetic capabilities that were lost long ago or whether evolution has rendered EAA pathways incompatible with metazoan metabolism. Here, we report progress on a large-scale synthetic genomics effort to reestablish EAA biosynthetic functionality in mammalian cells. We designed codon-optimized biosynthesis pathways based on genes mined from Escherichia coli. These pathways were de novo synthesized in 3 kilobase chunks, assembled in yeasto and genomically integrated into a Chinese hamster ovary (CHO) cell line. One synthetic pathway produced valine at a sufficient level for cell viability and proliferation. 13C-tracing verified de novo biosynthesis of valine and further revealed build-up of pathway intermediate 2,3-dihydroxy-3-isovalerate. Increasing the dosage of downstream ilvD boosted pathway performance and allowed for long-term propagation of second-generation cells in valine-free medium at 3.2 days per doubling. This work demonstrates that mammalian metabolism is amenable to restoration of ancient core pathways, paving a path for genome-scale efforts to synthetically restore metabolic functions to the metazoan lineage.


Assuntos
Aminoácidos Essenciais , Genoma , Aminoácidos/genética , Animais , Células CHO , Cricetinae , Cricetulus , Escherichia coli/genética , Mamíferos , Valina
20.
Expert Rev Med Devices ; 19(5): 441-449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35786122

RESUMO

INTRODUCTION: Timely placement of vascular access devices is critical during emergent clinical situations; however, challenges in peripheral access can be a common occurrence. Historically, emergency teams have used various approaches to gain peripheral vascular access in situations where traditional means were not feasible; these options have included peripheral venous cutdown, ultrasound-guided peripheral intravenous catheters (PIVs), longer PIVs, central catheters, and intraosseous devices. Each of these options have associated strengths and limitations depending on the clinical situation. AREAS COVERED: This narrative review reports on the burden of difficult venous access situations and discusses the evidence, and strengths and limitations of vascular access options to help address this challenge. Although first puncture success rates can be high when using alternative methods, significant challenges can include increased procedure time and greater risk of complications. The Easy-Internal Jugular (Easy-IJ) technique is a newer alternative option for patients with difficult venous access that is demonstrated to be safe and effective in emergency care. EXPERT OPINION: Moving forward, additional clinical studies are required to fully characterize the outcomes associated with the Easy-IJ technique and guidewire-assisted intravenous catheters, as well as to inform guideline development for more comprehensive recommendations on managing challenging or difficult peripheral access situations.


Assuntos
Cateterismo Venoso Central , Cateterismo Periférico , Cateterismo Periférico/métodos , Catéteres , Serviço Hospitalar de Emergência , Humanos , Veias Jugulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA